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Abstract 

In this report, an optimal sensor placement tool, developed for determin-
ing near-optimal configurations of stationary ground sensors, is general-
ized to support aircraft routing. This generalization requires characterizing 
candidate aircraft routes in terms of cost and coverage. Cost can reflect a 
variety of disincentives, not necessarily monetary—for example, a proba-
bility of aircraft to be heard on the ground. Several metrics for moving 
sensor platforms were considered to adequately characterize cost and cov-
erage. The generalized algorithm can be applied to such practical problems 
as determining the optimal combination of routes for multiple aircraft op-
erations, optimizing routes to supplement ground-sensor coverage, opti-
mizing ground sensors to cover blind spots of aircraft coverage, and simul-
taneously optimizing static and moving sensor platforms. An example 
problem that this report considers in detail is unmanned aircraft system 
(UAS) routing for verification of roadway security while minimizing UAS 
audibility at specified locations on the ground. 

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. 
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. 
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to 
be construed as an official Department of the Army position unless so designated by other authorized documents. 
 
DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR. 
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1 Introduction 

The problem of optimal coverage for ground sensors is to determine the 
numbers, types, and locations of sensors needed to satisfy coverage prefer-
ences, specified by a mission planner, with minimal total cost. Such a for-
mulation is a generalization of the original art gallery problem, which is to 
determine the number and locations of the guards so that each painting in 
the gallery is seen by at least one guard (O’Rourke 1987). The generaliza-
tion manifests in two respects. First, simultaneous optimization of multi-
ple types of sensors is supported; and second, sensors may not necessarily 
be line-of-sight. Vecherin et al. (2010, 2011) present an exact problem 
formulation with these modifications and such constraints as limited sen-
sor supply, multiple sensor coverage, and wireless sensor communication. 
Mathematically, the problem falls into a category of the nondeterministic-
polynomial (NP-hard) problems (Sierksma 2002) and, therefore, requires 
significant computational resources; for typical mission planning tasks, 
exact solution algorithms become impractical. To overcome this issue, a 
greedy algorithm had been developed yielding a suboptimal solution. The 
main idea of the algorithm is to place sensors one-by-one at locations that 
provide the maximum of overall coverage. This algorithm is a generaliza-
tion of the greedy algorithm for minimal set cover (Johnson 1974), known 
in combinatorial mathematics, to support the probabilistic sensor perfor-
mance framework. According to Feige (1998), such greedy algorithms are 
optimal among other possible approximate algorithms, considering the 
proximity of the provided solution to the exact solution and the elapsed 
computational time. Multiple example scenarios considered by Vecherin et 
al. (2010, 2011) and comparison with other heuristic and exact algorithms 
for optimal sensor placement confirm high efficiency and versatility of that 
approach. 

The goal of this report is to device an approach for generalizing the ap-
proximate stationary sensor placement algorithm to support optimization 
of moving sensor platforms, such as aircraft in general and unmanned air-
craft systems (UAS) in particular. If such a generalization is possible, the 
same computationally efficient approximate algorithm would enable solu-
tions to such problems as determining an optimal route (or combination of 
routes) for airborne sensing platforms, determining a route to complement 
coverage provided by stationary ground sensors, determining an optimal 
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ground-sensor configuration to cover blind spots of available UAS cover-
age, and simultaneously optimizing UAS routes and types and locations of 
ground sensors. 

In general, optimal routing is desirable in many areas; and there is a solid 
body of literature describing optimization for different purposes. The ap-
proaches for the solution can be grouped into three large classes: (1) ap-
proaches operating in continuous space and time; (2) approaches using 
structured space and time, such as optimization on graphs; and (3) heuris-
tic approaches, for example, simulating annealing, ant colony, tabu search, 
and genetic algorithms.  

The approaches of the first class are exemplified by a classic work of 
Dubins (1957) who considered solutions for the shortest path for a vehicle 
with a constant speed, finite maximal curvature, and specified initial and 
terminal positions and tangents of the route. Analysis of the solutions re-
vealed that all such routes in the two-dimensional Euclidean space (for ex-
ample, a plane at a constant altitude) consist of no more than three 
smoothly connected segments, each of which is either a straight line seg-
ment or an arc of the maximal curvature. The first class’ approaches are 
also common in the optimal control and planning areas (Boscain and 
Piccoli 2004; LaValle 2006) and in computational geometry, where this 
problem is often referred to as the watchman routing problem (e.g., Chin 
and Ntafos 1991; Wang et al. 2007), although solution methods are sub-
stantially distinct in these two areas. Khardi and Abdallah (2012) applied 
the variational calculus approach to determine an optimal descending path 
and throttle control to minimize sound levels at certain locations around 
an airport. There are two major challenges in practical application of such 
approaches. First, some practically important constraints may be extreme-
ly difficult to formulate in such a framework; and second, an exact solution 
may require extensive computational resources and become impractical.    

The approaches of the second class use the fact that any route, including 
the optimal one, must connect only a finite set of specified locations in the 
space that can be viewed as nodes on the graph, which brings the problem 
in the field of combinatorial optimization. Perhaps, the most renowned 
algorithm for optimal routing minimizing a sum of non-negative costs as-
sociated with the movement from one node to another is the Dijkstra algo-
rithm (Dijkstra 1959). There are many modifications of this algorithm 
suitable for a variety of constraints (e.g., A* algorithm [Hart et al. 1968] is 
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widely used, which improves the efficiency [the speed of convergence] of 
Dijkstra’s algorithm if the lower bound for the total cost is provided).  

Route optimization approaches allowing minimization of the total cost 
subject to linear inequality constraints can be formulated in terms of the 
binary linear problem (Toth and Vigo 2001). A generic problem statement 
for one type of vehicles involves two-index logical variables, xij, that indi-
cate arcs connecting one node with another. The optimal solution is given 
in terms of these variables, with possible values 1 or 0, indicating which 
arcs should be selected in the optimal route. Other constraints in the prob-
lem may be imposed to guarantee that the route is continuous (there are 
no disconnected arcs) and closed (terminates at the same node where it 
began). In such formulation, an elementary logic element is an arc, not a 
node, which is a principal distinction from the single-index optimal sensor 
formulation. Additional constraints can be incorporated in such a frame-
work, such as visiting certain nodes several times and desired time win-
dows for the visits. 

The approaches in the third class represent universal optimizers, frequent-
ly inspired by biological or other natural phenomena, and their efficiency 
for a specific optimization problem depends on fortunate insights into 
physical or mathematical aspects of that problem. For example, simulated 
annealing (Osman 1993), genetic (Ombuki et al. 2006), ant colony (Bell 
and McMullen 2004), and tabu search (Gendreau et al. 1994) algorithms 
are frequently used. The last can also be used in the former metaheuristic 
algorithms to avoid convergence to local optima. Main advantages of such 
approaches are their robustness and ability to incorporate complex con-
straints. 

Among all considered approaches, only one is fully compatible with the 
single-index binary linear programming formulation used for stationary 
ground-sensor optimization and, thus, is the most suitable for our re-
search goal. In Toth and Vigo (2001, 21–22), it is referred to as the set-
covering formulation. In such an approach, an elementary logic element is 
an entire vehicle route from a class of admissible routes (that is, routes 
satisfying other constraints). And a single-index logical variable indicates 
which of the admissible routes is the most optimal. Thus, mathematically, 
it is fully compatible with the stationary sensor selection and placement 
optimization, where a logical single-index variable indicates types and lo-
cations of sensors.             
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To this end, candidate aircraft routes should be generated and character-
ized in terms of provided coverage and associated cost, similarly to sta-
tionary ground sensors. As we will show below, there are a few ways of do-
ing so; and each way may be suitable for certain missions.  
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2 Problem Statement 

The set-covering approach to routing optimization is based on the same 
principles as the optimization of stationary ground sensors considered in 
Vecherin et al. (2010, 2011). First, coverage preferences are specified for 
the mission by indicating a desired level of probability of detection (at a 
certain fixed level of probability of false alarm) for each spatial location of 
the scene. Second, a set of candidate aircraft routes is created either with 
existing flight planning software, manually by a mission planner, or with 
the use of the algorithm considered in Section 4 of this report. Third, each 
candidate route is evaluated in terms of provided coverage and associated 
costs. Examples of what cost might be and nuances of cost characterizing 
entire aircraft routes are considered below. Finally, the most optimal com-
bination of routes is chosen from among the candidates after evaluating 
cost-coverage relationships for each combination. Mathematically, such a 
determination of the most optimal combination out of many candidates 
can be strictly formulated in terms of the single-index binary linear pro-
gramming problem outlined below. 

Suppose, there are Q candidate aircraft routes, R ,q  q = 1,…,Q. Assuming 

that distinct routes provide independent observations, the problem of de-
termining the optimal combination of the routes can be stated as follows: 

 
 arg min , , ,

,

T
qu 



u c u

Au b
0 0 1

  (1) 

where  

 u = the indicative column vector whose elements can be either 0 or 
1. Value 1 in the q* position of vector u (and u0) indicates that 
the route *Rq  should be taken, 

 c = the cost column vector, 
 T = the transpose operation, 
 u0 = the optimal vector minimizing the total cost, 
 A = the coverage matrix with elements  ln ( ,R )iq d i qA P  r1

characterizing the coverage at a spatial point, ir , provided by a 



ERDC/CRREL TR-14-20 6 

 

sensor moving along the candidate route Rq ; dP  is the 

probability of detection,  
 b = the column-vector of given coverage preferences for each 

spatial point,  ln ( )pref
i d ib P  r1 , i = 1,…,N, where N indicates 

the total number of spatial points where the coverage is 
required. pref

dP  is the threshold probability of detection 

reflecting coverage preferences.  

A specific distribution of ones in the indicative vector u yields a specific 
route combination. Analogously to the stationary ground sensors, the set 
of candidate routes may include subsets of the routes for distinct aircraft 
types: Q Q Q  1 2 . In this case, the solution will yield the number, the 

aircraft type, and corresponding optimal aircraft routes.  

The cost may reflect any additive quantity and is determined by a mission 
goal. For example, the cost may be the actual cost to operate an aircraft; 
then, the goal of the optimization would be to minimize the total financial 
expenses for a specified mission. Another example is an abstract cost,  
c = [1, 1, 1, …]; and the optimization would yield the minimal number of 
aircraft to accomplish the mission.  

For example, let us consider a mission when aircraft should provide sur-
veillance of a certain area on the ground with minimal audible disturbance 
at specified locations where hostile observers may be located. Practical ex-
amples include monitoring a stationary object (a building, hostile or 
friendly base camps, etc.) or roadways while avoiding audible detection by 
the observers. The locations of the observers may be within the object be-
ing observed (like in the case of monitoring a hostile base camp, for exam-
ple) or somewhere else (for instance, when monitoring a friendly base 
camp or roadway). In some cases, the audibility of the aircraft at some lo-
cations should be, oppositely, maximized so that the enemies would detect 
the aircraft on purpose, which may prevent them from malicious actions.  

In these scenarios, the cost should reflect the probability of aircraft being 
detected. Depending on a mission, a characterization of the entire aircraft 
route, Rq , in terms of provided coverage and probable detection may in-

clude several options considered in the next section. 
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3 Characterization of an Aircraft Route in 
Probabilistic Terms 

The inherent difficulty in probabilistic characterization of an aircraft route 
is that the probabilities depend on the aircraft position,  , ,x y zs s ss , 

changing with time. Indeed, at any given time, t, the aircraft position can 
be expressed as follows: 

 0 0
( ) ( ') ',

t
t t dt= + ∫s s V  (2) 

where s0 is the starting aircraft position and  , ,x y zv v vV  is the aircraft 

velocity, which is necessarily a function of time for any closed aircraft 
route. For example, consider an idealized closed route, a perfect circle with 
a radius a at a fixed altitude, zv 0 . Even at the constant aircraft speed, 

,V const V  its horizontal components are time-dependent: 

sinxv V ωt  and cosyv V ωt , where /ω V a  is the angular velocity. 

As a result, coverage provided by aircraft and its detectability are also 
changing with time. In practice, time can be discretized by a finite set of 
time moments, 𝑡 = 𝑡1, … , 𝑡𝑀, so that the entire route, Rq , can be presented 

by a set of M route points, R { ,..., }q q Mq s s1 , where ( )pq q pts s , 

𝑝 = 1, … ,𝑀. These route points can be viewed as locations of individual 
sensors. Depending on a mission, several choices are feasible to character-
ize an aircraft route in probabilistic terms. Two typical missions are con-
sidered here: 

Mission 1. Confirm or deny that a certain target is present in a certain 
location. To fulfill this mission, it is sufficient to detect the target from at 
least one route point. The corresponding probability of detection for this 
mission, ( )( )dP r1 , can be expressed in terms of the probability that a target 

will not be detected from all route points (missed detection) along route q, 
as follows: 

 ( )( ) ( ; , , ),d md q MqP P r r s s1
11   (3) 
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where the superscript (1) denotes “at least one” and the semicolon sepa-
rates the spatial point at which the probability of missed detection is calcu-
lated from the set of aircraft route points. 

Mission 2. Constantly monitor a target or a certain area, such as a road-
way. To fulfill this mission, the object of interest should be detected from 
all route points. The corresponding metric for this mission is the joint 
probability of detection from all route points along route q, 

( ; , , ).d q MqP r s s1    

A variety of other missions for UASs is possible, each of which requires its 
own unique objective function for optimization and constraints. For ex-
ample, Measure et al. (2009) consider the problem of UAS optimal routing 
from a specified starting location to a specified destination with the prima-
ry focus on minimizing adverse weather effects on the UAS, such as rain, 
fog, ice, etc. These effects are characterized by a separate software called 
Tri-Service Integrated Weather Effects Decision Aid (T-IWEDA) that was 
previously developed by the Army Research Laboratory. Originally, these 
effects are characterized by Boolean values as “red,” “yellow,” and “green” 
hazardous zones. Analyzing the zone’s thresholds derives a cost function, 
which is subject to minimization. Another optimization objective is con-
sidered in Lee (2012) for a multiple UASs employed in counterinsurgency 
operations. In this scenario, multiple target locations are specified in ad-
vance with the requirements to visit some of the locations once and some 
other locations twice. For each such visit, a score had been prescribed by a 
mission planner group, along with other mission-specific constraints, such 
as maintenance schedule, preferred time windows for observations, and 
time during which a target was observed. The objective function subject to 
minimization incorporates these scores. The set of the optimization objec-
tive functions and constraints in the problem determines an approach to 
solve it. In both these examples, probability of detection is not the objec-
tive of the optimization; and, furthermore, the objectives and constraints 
are specified by either a mission planner or calculated using separate soft-
ware.   

In our study, both missions stated above require joint probabilities (either 
missed detection or detection) for all route points. They can be easily cal-
culated from individual route point probabilities only assuming independ-
ent observations. As shown below, for statistically dependent observations, 
the calculations are not trivial. 
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3.1 Coverage matrix for aircraft 

Coverage matrix A enters the inequality coverage constraint in equation 
(1). For Mission 1, its elements are  

  ( )ln ( ) ln ( ; ,..., ),iq d i md q MqA P P  r r s s1
11   

whereas, for Mission 2,  

  ln ( ; ,..., ) .iq d i q MqA P  r s s11   

Note that, contrary to univariate probabilities, for multivariate probabili-
ties (both dependent and independent),  

 ( ; ,..., ) ( ; ,..., )md q Mq d q MqP P r s s r s s1 1 1  

for any q. To calculate the joint probabilities, sensor information can be 
fused from all M observations (route points) either in the probability space 
or in the signal space. 

3.1.1 Information fusion in the probability space 

In this case, the probability of detection for each spatial location is given 
for each individual route point along the route, ( ; )d pqP r s . These probabili-

ties are calculated at a certain threshold level of the false alarm probabil-
ity, ( )fa pqP s , also evaluated individually for each route point. If sensor 

readings are assumed to be independent, the probabilities for all route 
points equal the product of corresponding probabilities at every route 
point: 

 

( ; , , ) ( ; ), ( ; , , ) ( ; ),

( , , ) ( ).

M M

md q Mq md pq d q Mq d pq
p p

M

fa q Mq fa pq
p

P P P P

P P

 



 



 



r s s r s r s s r s

s s s

1 1
1 1

1
1

 



 (4) 

Note that the false alarm probability for the entire set of observations is 
not equal to the original false alarm threshold, set for an individual route 
point. It decreases, along with the joint probabilities of detection and joint 
probabilities of missed detection. Therefore, the assumption of independ-
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ent observations represents the best-case scenario for Mission 1, and the 
worst-case scenario for Mission 2. Figure 1 illustrates these detection 
probabilities assuming no obstacles and flat terrain. Figure 1(a) shows a 
sensing footprint from a single route point indicated by a black circle in 
the center. Of course, in complex terrain conditions, the footprints will be 
of irregular shapes; but the tendency, illustrated here, will remain the 
same.  

Figure 1.  Detection probabilities under different assumptions: (a) probability of detection on 
the ground from a single route point, indicated by a circle in the center as viewed from above; 

(b) probability of detection from at least one out of four route points; (c) probability of 
detection from all four route points; (d) average probability of detection over four route points. 

  

  

The considered example assumes that all route points (black circles in all 
plots of Figure 1) have identical sensing footprints shown in Figure 1(a). 
Figure 1(b) and (c) depict the probabilities of detection for Mission 1, 

( )( )dP r1 , and Mission 2, ( ; ,..., )d q MqP r s s1 , respectively. Note a remarkable 

difference in covered area for these cases. These probabilities represent 
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extreme cases, not quite characterizing typical coverage along the route. 
To get an insight about average coverage, Figure 1(d) shows the averaged 
detection probability (over four route points). However, the caveat is that 
it does not really equal any instantaneous probability of detection. For ex-
ample, if an object is hidden behind a wall and an aircraft circles around it, 
the detection of that object would have zero probability for one half of the 
route and unit probability for the other. But the route-averaged value 
would be 0.5. 

The assumption of independent readings is very convenient but may not 
always be valid for arbitrary locations pqs . Apparently, for short periods of 

time, two consecutive route points practically coincide with each other; 
and the corresponding sensor readings cannot be treated as independent. 
Some route points can be close to each other due to route geometry even if 
they are significantly separated in time. For these cases, the chain rule for 
the dependent probabilities reads as follows: 

 ( ; , , ) ( ; ) ( ; | ) ( ; | , ) ( ; | , , ),md M md md md md M MP P P P P r s s r s r s s r s s s r s s s1 1 2 1 3 2 1 1 1  
 (5) 

but the conditional probabilities in the right-hand side of equation (5) are 
unknown and cannot be calculated based on the individual probabilities 

( ; )md pqP r r . A more accurate approach to deal with dependent observations 

is to fuse information in the signal space. 

3.1.2 Information fusion in the signal space 

Let us review how the probability of detection at r is calculated for a single 
stationary sensor located at s (Burdic 1984): 

 ( ; )( ; ) ( )d U
γ

P p w dw


  r sr s , (6) 

where γ  is the detection threshold determined from the following equa-
tion for some given faP : 

 ( )( ) ,fa N
γ

P p w dw


  s  (7) 
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and s( )Np  and r; s( )Up are probability density functions of a background 

noise and a received signal powers. The probability of missed detection for 
this univariate case is  

 ( ; )( ; ) ( ; ) ( )
γ

md d UP P p w dw


    r sr s r s1 . (8) 

For a set of dependent observations, equations (6–8) can be generalized as 
follows. First, depending on mission objectives, the specified detection 
threshold of a false alarm may be applied not only to an individual obser-
vation but also to the entire set of observations. Let us denote that thresh-
old β . Then 

 ( , , )( , , ) ,
Mfa N M M

β β

P p w w dw dw
 

   s s1 1 1

    (9) 

where ( , , )( , , )
MN Mp w ws s1 1


 is the joint M-variate probability density 

function for a background noise. Then, the joint probabilities of detection 
and missed detection are expressed in terms of the joint probability of the 
received signal, ( ; , , )( , , )

MU Mp w wr s s1 1


: 

 ( ; , , )( ; , , ) ( , , ) ,
Md M U M M

β β

P p w w dw dw
 

   r s sr s s
11 1 1

     (10) 

 ( ; , , )( ; , , ) ( , , ) .
M

β β

md M U M MP p w w dw dw
 

   r s sr s s
11 1 1

   
 (11) 

The exact probability distribution functions for signal and noise may de-
pend on signal modality and location of the measurements but, generally, 
can be described by a family of the chi-squared distributions. For high de-
grees of freedom, their first-order approximation would be the Gaussian 
distribution.  

As an example, let us consider the effect of the dependency of two observa-
tions on the detection probability under assumptions of joint normal dis-
tributions for the signal and noise. Suppose the original (no noise) signal 
power at each of the two locations s1 and s2 has the mean Xμ  4  and vari-
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ance Xσ 2 2 , and noise is described by Nμ  3  and variance Nσ 2 1 . The 

signal has been emitted at some location r. Assuming independence of the 
background noise and the signal, the distribution of the received (noisy) 
signal, r; s( )Up , will be also normal with the mean Uμ 7  and variance 

Uσ 2 3 . Suppose, the threshold for the false alarm is faP  410 . Then, 

from equation (7), .γ6 7190 ; and from equation (6), .dP 0 5644 . This 

is the individual probability of detection at each of the two locations. 

If these observations were independent and the false alarm threshold was 
imposed to each of them individually, then equations (9–11) would recast 
into the products of univariate functions; and the joint probability of false 
alarm would be ( , )faP     s s 4 4 8

1 2 10 10 10  whereas the joint probabil-

ity of detection would be ( ; , ) . . .dP   r s s1 2 0 5644 0 5644 0 3186 . This re-

sult can be obtained directly in the probabilistic space using equations (4).   

However, if these two observations were required to have jointly the false 
alarm probability of ( , )faP s s 4

1 2 10 , then, from equation (9), the detec-
tion threshold would be .β5 3263  and the detection probabilities, using 
equation (10), would be ( ; , ) .dP r s s1 2 0 6940  and ( ; , ) .dP r s s1 2 0 7544 , 

corresponding to completely independent and completely dependent ob-
servations, respectively. As one can see, in this example, applying the false 
alarm threshold to the entire set of observations significantly increased the 
detection probability for independent observations (more than two times). 
Furthermore, dependent observations increase the joint probability of de-
tection in comparison with the independent ones (from 0.69 to 0.75). This 
corroborates with the previous statement that the assumption of inde-
pendency represents the worst-case scenario for the joint probability of 
detection (Mission 2).  

It is worth noting that this approach to calculating joint probabilities al-
lows one to estimate the range of the possible probabilities for two limiting 
cases: for completely dependent and completely independent observa-
tions. Whatever true dependence is, the corresponding joint probability of 
detection lies in that range. For the considered example, partly dependent 
observations will result in the detection probability in the range [0.69 
0.75].  
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3.1.3 Approximate metrics 

Both missions considered in this study require joint probabilities, which 
can be easily calculated only for independent observations. However, this 
assumption is likely to be violated for spatially close route points. A more 
accurate approach of information fusion in the signal space can be em-
ployed, but it requires a specification of the joint probability density func-
tions for signal and noise and multivariate integration in equations (9–11). 
For example, if a route is specified by M = 50 route points, then, 50-variate 
integrals should be evaluated numerically. It may be prohibitively compli-
cated for some applications requiring a fast analysis. This poses a demand 
to have easily obtainable approximate metrics adequate for both depend-
ent and independent observations. Reasonable choices are the maximal, 

{ }
max ( ; )

pq
d pqP

s
r s , and minimal, 

{ }
min ( ; )

pq
d pqP

s
r s , probabilities along the route 

for Mission 1 and Mission 2, respectively. For Mission 1, coverage provided 
with respect to the maximal instantaneous probability will hold true with 
respect to the actual probability ( )( )dP r1  because the former is no greater 

than the latter. For Mission 2, coverage provided with respect to the min-
imal probability does not guarantee coverage in terms of the joint detec-
tion probability but guarantees that, at each individual route point, the 
probability of detection will not be smaller.   

3.2 Probabilistic cost function 

For missions requiring optimization of the aircraft detection (covert opera-
tions), the cost function in equation (1), c, should reflect the probability of 
the aircraft being heard at some specified locations, denoted as hr , where 

“listeners” are located. For this purpose, the aircraft plays the role of a 
sound source now rather than a moving sensor as we considered in the 
previous subsection. These locations are, in general, independent of the 
spatial points where coverage is required; they can be within the object be-
ing monitored or somewhere else.  

Each element of cost vector c should reflect a probability of aircraft being 
detected along the entire route Rq . For a single individual waypoint, spq, it 

is reasonable to calculate the probability that at least one of the listeners 
will detect the aircraft. And the assumption of listeners’ independence is 
justifiable in this case:  
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  ( ) ( ) ( ; ) ,
J

c c
d pq d hj pq

j

P P


  s r s1

1

1 1  (12) 

where J is the number of listeners. To fuse probabilities for different spq, 
we can apply the mathematical framework developed in the previous sub-
section with the only distinction being that aircraft is a sound source now 
and the sensors are the listeners. If the goal is to avoid the aircraft from 
being heard, a cost for a route Rq can be defined as maximal aircraft detec-

tion probability among all route points. 

A most complicated but practically important case is when the listeners 
are located within (or close to) the object being monitored. This problem 
can hardly be solved without computer simulations for the quantitative 
assessment of both the aircraft coverage and aircraft exposure probabili-
ties because the optimal route should balance these competitive demands. 
On the one hand, the aircraft should be close enough to the object of inter-
est to provide necessary resolution of detection. But on the other hand, it 
should be far away from the listeners who may reveal and shoot it. Section 
5 considers such a scenario. As the numerical simulations will show, the 
optimization algorithm with the probabilistic cost function, as defined 
above, will tend to choose a route or sensor locations farther away from 
the listeners (a safer operation). Sometimes, it will be preferable for air-
craft to come closer to the object despite the higher risk of being exposed. 
This can be accommodated by introducing the risk tolerance factor, ;c 0 0  

and the cost in equation (12) will be calculated as follows: 

 ( )

{ }
max ( )

pq

c
q d pqc c P 

s
s1

0 . (13) 

The greater c0  is, the higher the exposure risk that is accepted.   

3.3 Coupling with ground sensors 

The considered approach for aircraft route optimization can be used in 
practice in a few distinct ways. First, one can determine an optimal route 
(in terms of cost and provided coverage) for a single aircraft. Second, it is 
possible to determine an optimal combination of routes, numbers, and 
types of multiple aircraft. Third, the optimization can be performed to 
complement the coverage of a ground-sensor network. Finally, a complex 
problem of simultaneous optimization of ground sensors (numbers, types, 
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and locations) and aircraft routes can be solved. For the latter, the key 
mathematical quantities appearing in the original algorithm for stationary 
ground sensors (Vecherin et al. 2010, 2011), denoted with superscript S 
below, should be modified to include analogous quantities for aircraft, de-
noted with superscript UAS, as follows (a comma stands for merging ma-
trices row-wise, and a semicolon stands for merging column-wise): 

Coverage matrix: S UAS[ , ].A A A  

Indicator vector: S UAS[ ; ].p p p  
Cost function: S UAS[ , ].c c c  

Note that the vector of coverage preferences, b in equation (1), remains 
unchanged. It sets coverage goals that will be achieved by determining an 
optimal combination (with respect to the total cost) of ground sensors and 
aircraft together. 
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4 Determining Candidate Aircraft Routes 

In the framework described in Section 3, the candidate aircraft routes Rq  

should be specified, either manually or automatically, with flight planner 
software. In this section, we describe an algorithm to generate candidate 
routes for the missions outlined in Section 2. Generating a set of admissi-
ble routes is a key element in the set-covering route optimization para-
digm. For our purposes, the following heuristics, assumptions, and con-
straints are employed to generate admissible routes: 

• If there are several areas of interest for a single mission, the areas 
are grouped into groups with no more than three areas of interest in 
each group. 

• Optimization of multiple UASs (same or distinct types) is support-
ed. 

• The range of possible altitudes is specified by a mission planner. 
• The spatial resolution is specified between the routes in vertical 

(Δz) and horizontal (Δr) directions; the minimal offset distances 

min
defd  and max

defd  may also be specified. 

• The spatial resolution is specified between route points of a single 
route (Δs). 

• The geometry of the area of interest determines the shape of the 
routes; that is, for each altitude, the route has a constant offset from 
the object except for problematic areas, as discussed below, where 
the offset can be larger. 

• Optionally, irregular loitering routes with oscillations may be gen-
erated. 

• Two or more UASs can follow the same route with delays. 
• Detection from distinct UASs is independent. 
• The areas of interest and the routes are specified by a set of point 

coordinates (a raster). 
• The airspeed of a UAS and its endurance are specified. 
• Optionally, the sensor’s field of view, a preferred tilt angle, and re-

quired target resolution can be specified. 
• For each altitude, the admissible offsets will not exceed the UAS 

endurance and, if specified, will be compatible with the required 
sensor’s field of view and resolution. 

• No-fly zones are supported. 
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4.1 Basic algorithm for candidate route generation 

While constant altitudes, both above the sea level and above the ground 
level, are trivial to handle numerically, constant offsets are not, especially 
when the objects of interest have irregular shapes. 

As Figure 2(a) demonstrates, for convex objects, the constant offset re-
quirement is realizable for the exterior space, where d denotes the offset 
distance. A square in the center is a convex object subject to monitoring, 
and the purple curve around it is an aircraft route distant from each point 
of the object at the specified distance d. However, as Figure 2(b) illus-
trates, the problem is infeasible for the interior space. Apparently, a geo-
metric figure with a constant offset from the edges of the external square 
(representing an object of interest) would be another square in the interior 
(representing aircraft route). However, the requirement to have a constant 
offset will be violated for all points of the external object closer to the low-
er right corner, as illustrated in Figure 2(b), because D > d.  

Figure 2.  Aircraft route (purple circles) with fixed offset from a convex object of interest (blue 
square): (a) outer space and (b) inner space. Note that the condition of the exact offset 

distance d is violated at sharp angles (the lower-right corner) because D > d. 

  

For realistic scenarios (e.g., roadways of irregular shapes), sharp corners 
are frequently present; and aircraft may face a problem encircling both the 
outer and inner corner space. To make the problem geometrically feasible, 
the requirement of having an exact offset distance should be relaxed to 
“not closer than the specified distance but as close as possible.” Even after 
such a relaxation, it is still challenging to find a robust and efficient nu-
merical solution; we discuss some of the numerical issues below. 

Self-intersections represent a common routing problem as illustrated in 
Figure 3(a). In this figure, the blue curve depicts a roadway, and the purple 
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circles depict a UAS route at some specified offset distance (with the ex-
ception of sharp corners where the offset is allowed to be larger). The route 
starts at the circle with coordinates (35, −7) and goes clockwise until the 
problematic sharp-angle area. There, once the self-intersection happens, it 
goes backwards toward the beginning because previous route points are, 
indeed, the most optimal ones. To avoid such an issue, the condition for-
bidding self-intersections with all previously placed route points should be 
imposed, which may notably degrade the speed of the algorithm, especial-
ly, for long routes. 

Figure 3.  Illustration of failures in automatic route generation: (a) self-intersecting routes, and 
(b) bottleneck resulting in abrupt route termination. 

  

A less apparent issue is a bottleneck that leads to an abrupt route termina-
tion, as illustrated in Figure 3(b). It can happen when there is a very nar-
row entrance satisfying the requirement of the specified offset distance, so 
that an exit is possible only by intersecting previous route points. Because 
such intersections are forbidden, the algorithm terminates. The only way 
to resolve the issue is to prevent the search algorithm from entering the 
bottle neck. To this end, the algorithmic solution is to go back one step, 
temporarily increase the offset distance and the distance between the 
route points, and repeat the search of the new route point with these new 
parameters. If the first iteration did not resolve the issue, increase the dis-
tances again and repeat the search. Eventually, the algorithm will avoid 
entering the problematic area. At this moment, the distances are set back 
to their original values, and the search continues in a normal mode. 

With these counter-measures introduced in the algorithm, a new problem 
of infinite looping may appear, as shown in Figure 4(a).    
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Figure 4.  Illustration of (a) the infinite loop failure and (b) a final algorithm with all 
modifications. Note routing in the problematic sharp-angle areas.  

  

The reason for infinite looping is that the termination criterion for the 
search is the proximity of the last route point to the first one. However, if 
the starting point was accidentally selected in a problematic area, no route 
point will fall in the starting point’s close proximity, and the algorithm will 
continue to search. To resolve this issue, the starting point should be se-
lected at the most remote pixel of the object, such that the route converges 
to the same route point from both directions. 

With these modifications, the final algorithm for automated generation of 
admissible routes reads as follows: 

Algorithm 1. Basic routing. 

Inputs: (x0, y0) – Cartesian coordinates of the object of interest; d0 – 
minimal offset distance; ds – minimal distance between two consecutive 
route points; dx0 – map resolution. 

Output: (x, y) – Cartesian coordinates of the route. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Select the first route point; 
Set distance from the current point to the first point: D = ds+1;  
WHILE (D > ds) 
 FOR each candidate route point 
  set d2 = Inf; the closest distance to the object; 

make a new candidate route point at the distance ds from the 
last one;  
calculate the minimal distance d from the current point to all 
object’s points; 

-100 -50 0 50 100 150
-80

-60

-40

-20

0

20

40

60

80

100

-10 0 10 20 30 40 50 60 70 80
-10

0

10

20

30

40

50

60

70

80

x

y

x 

y 
(a) (b) 



ERDC/CRREL TR-14-20 21 

 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

calculate the minimal distance d1 from the current point to all 
previous points; 

  IF (d < d2) AND (d >= d0) AND (d1 >= ds) 
  d2 = d; 
  select the current candidate; 

END IF 
END FOR 
IF (no candidate selected) 
 update a list of problematic candidates; 
 increase d0; 
ELSE 

record the selected candidate as a new route point (x, y); 
set d0 to its original value; 
calculate D; 

END IF 
END WHILE 

 
The described algorithm has been tested for various objects of regular and 
irregular shapes and has performed reliably. For the square object, depict-
ed in Figure 2(a) as a blue square, the algorithm provided the known theo-
retical solution for outer space, depicted as a purple curve in Figure 2(a). 
Figure 2(b) depicts a more complex example of a highly irregular roadway 
with four problematic sharp-angle areas. As one can see, the algorithm 
works equally well in this case. 

4.2 Introducing various complications 

In practice, one may desire incorporating some specific constraints into 
the problem. We consider a few of them below. 

4.2.1 Oscillatory loitering patterns 

There two main reasons for having oscillatory routes in the admissible set. 
First, coverage may be required in a certain area; but an exact location of 
the target is unknown. In this case, loitering somewhat around the main 
course of the route might be helpful. Second, there might be tactical con-
siderations, such as to make aircraft movement less predictable or to 
simulate its leaving the scene.  
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To achieve this, two pivot routes (of the same length in terms of route 
point) need to be specified, Ro and R1, corresponding to the closest and the 
farthest offset distances, respectively. R1 is determined using the basic 
routing algorithm. R0 is determined using R1. (In principle, it could have 
been determined, also, using the basic algorithm; but, in this case, the 
number of route points would be different in R0 and R1.) First, R1 is de-
scribed in the polar coordinate system relative to an arbitrary origin 
somewhere inside R1 (e.g., taking the mean values of the R1 Cartesian co-
ordinates x and, separately, y). Second, the magnitudes of the radius vec-
tors are reduced to match the specified closest offset distance. Third, R0 
route points are determined for the same polar angles but using the ad-
justed magnitudes of the radius-vectors. Finally, the x- and y-coordinates 
of the oscillatory route points are found by using the following equations: 

 
 
 

. ( ) . ( )cos ( ) / ,

. ( ) . ( )cos ( ) / ,
p p p p p

p p p p p

x x x x x πF p M

y y y y y πF p M

    

    
1 0 1 0

1 0 1 0

0 5 0 5 2 1

0 5 0 5 2 1
 (14) 

where ( , )p px y  are the p-th coordinates of the oscillatory loitering route, 

p = 1,…,M; ( , )p px y  and ( , )p px y  are coordinates of the closest and farthest 

routes, respectively; and F indicates oscillation frequency. Figure 5 shows 
oscillatory routes for oscillation frequencies F = 1, 2, 6, and 8. The pseudo-
code for the loitering algorithm is given below: 

Algorithm 2. Oscillatory loitering routes 

Inputs: (x1, y1) – Cartesian coordinates of the farthest route R1; d – reduc-
tion distance; F – oscillation frequency. 

Output: (xp, yp) – Cartesian coordinates of the oscillatory loitering route. 

1 
2 
3 
4 
5 
6 
7 

select the polar coordinate system origin; 
calculate radius vectors r and polar angles for each route point of R1; 
reduce the radius vectors on the specified reduction distance: r=r-d;  
determine route R0 using the adjusted r and the same polar angles; 
FOR each candidate route point 
 use Eq. (14) to determine the loitering route; 
END FOR 
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Figure 5.  Oscillatory loitering routes for different frequencies. Blue and black markers 
indicate the closest and the farthest routes, R0 and R1, respectively. Magenta markers depict 
the oscillatory route. F is the oscillatory frequency indicating how many times the outer route 

will be touched by the oscillatory route: (a) F = 1, (b) F = 2, (c) F = 6, and (d) F = 8. 

  

  

4.2.2 No-fly zones 

No-fly zones are a common requirement for automated aircraft routing. 
These zones can represent civilian residential areas, places of religious im-
portance, or can be forbidden for tactical considerations. These require-
ments can be handled in optimization either as soft constraints or as hard 
constraints. The soft constraints penalize the objective function for any 
part of a route passing over the no-fly zones. However, the penalty should 
be chosen very carefully as arbitrarily large values will make the objective 
function non-differentiable (or poorly differentiable), which is a principal 
violation in some optimization approaches, jeopardizing the operability of 
the entire optimization, whereas not-so-large values will allow some short 
segments of a route to pass over the no-fly zones. The optimization ap-
proach described in this report allows one to impose the hard constraints, 
that is, routes (or any part of theirs) are guaranteed to not pass over speci-
fied no-fly zones. 
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If the offset distance from a no-fly object coincides with the offset distance 
from the object of interest, the no-fly object can simply be treated as an-
other object of interest. However, in reality, the desired offset distances 
from the object being monitored and the no-fly object might be distinct. 
This requires a modification of the basic routing algorithm. First, a new 
input variable, dobs, is added to indicate the desirable offset distance from 
the obstacle. Second, the selection of the first route point should be adjust-
ed to be not closer than dobs from the no-fly zone. Third, for each new can-
didate route point, the closest distance to the no-fly area must be calculat-
ed, Dobs. And fourth, the selection criteria of a new route point, lines 12 
and 13 in Algorithm 1, should be modified as follows: 

12    IF (dmin < d2) AND (d >= d0) AND (d1 >= ds) AND (Dobs >= dobs), 
13    d2 = dmin, 
 

where dmin = min(d, Dobs). Figure 6 illustrates the operability of the modi-
fied algorithm for equal and unequal offset distances. Figure 6(a) depicts 
the route without any no-fly zones. Figure 6(b) shows how the original 
route would change in the presence of the no-fly zone depicted by black 
squares and with the same offset distances from both the roadway and the 
obstacle. Figure 6(c) depicts the routing around the no-fly zone when the 
offset distance from the zone is larger than the offset distance from the 
roadway (the black markers). In the areas far enough from the no-fly zone, 
the route coincides with the original route (without the no-fly zone), while 
the routing is distinct in the vicinity of the zone. Especially, note the be-
havior in the upper “valley” where the required offset from the no-fly zone 
dominates the requirement of the roadway offset. Figure 6(d) depicts the 
opposite situation when the no-fly zone offset is smaller than the roadway 
offset. These figures illustrate that the algorithm yields reasonable solu-
tions in the presence of no-fly zones. 
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Figure 6.  Avoiding no-fly zones (black squares): (a) route without no-fly zones, (b) roadway 
and no-fly zones with equal offset distances, (c) offset distance from the no-fly zone is larger 
than from the roadway (the magenta markers indicate the route with equal offset distances 

and the black markers depict the unequal offset route), and (d) offset distance from the no-fly 
zone is smaller than from the roadway (the magenta markers indicate the route with equal 

offset distances and the blue markers depict the route with an unequal offset).  

  

  

4.2.3 Multiple targets 

It is not uncommon to need to observe multiple objects of interest during a 
single UAS flight. These can be disconnected objects or branches of a sin-
gle long roadway. Each of the objects may have its own unique geometry 
and, thus, will generate a set of its own admissible routes. Furthermore, a 
route can be generated embracing all of them at once. Additionally, candi-
date routes can be generated around each possible combination of the 
specified objects or only around some specific combinations. With the first 
option, the number of objects should be limited to avoid a rapidly increas-
ing number of possible combinations. For example, if the number of ob-
jects is Nobj = 3, numbered 1, 2, and 3, then for each allowed altitude and 
each offset distance, there are 3 routes around each object, one route 
around all of them together, {1, 2, 3}, and 3 routes around distinct combi-
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nations, such as {1, 2}, {1, 3}, and {2, 3}. Altogether, there are 7 candidate 
routes. Suppose four possible altitudes and three possible offset distances 
are specified. Then, 3 objects will generate 84 candidate routes. Addition-
ally, the oscillatory loitering routes can be included for each altitude. As 
one can see, the set of admissible routes is rapidly increasing with the 
number of objects when the combinatorial option is used. Each of these 
routes is characterized by a set of M route points; M is determined by a 
specified resolution and the size of the object (in practice, M can be several 
tens up to a maximal number allowed by a specific UAS control unit). In 
the current program realization, the number of objects is limited to 3 to 
keep the calculations tractable for an average personal computer. If there 
are more objects of interest for a single mission, we recommend either us-
ing partial combinations or grouping these objects in clusters of three and 
generating routes for each cluster individually.   

Figure 7 depicts the combinatorial routes around three branches of a 
roadway (the blue curve).  Markers of different colors correspond to dif-
ferent offset distances. 

Figure 7.  Candidate routes around branches of a long roadway. Markers of 
different colors correspond to different offset distances. 

 

4.2.4 Camera’s field of view and resolution 

Some missions may have specific requirements for the quality of images 
being acquired, such as the resolution and a view angle of a target. For ex-
ample, Etemad and Chellappa (1997) used the image resolution of 50 × 60 
pixels for automated face recognition program FERET (Phillips et al. 
2000) and showed that this resolution can be reduced under some circum-
stances. Other image recognition algorithms may have different require-
ments. Johnson’s criteria (Johnson 1958) set minimal resolution require-
ments for different levels of target recognition by a human. Although the 
original criteria were specified in terms of line pairs on the target image, 
suitable for CRT (cathode ray tube) monitors, they can be recast into pix-
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els, suitable for LCD (liquid crystal display) monitors and digital imaging, 
assuming that each line pair corresponds to 2 pixels, as follows: 

• Detection of target’s presence: 2.0 ± 0.5 px 
• Detection of target’s orientation and symmetry: 2.8 ± 0.7 px 
• Detection of the type of target (a person versus a car): 8 ± 2 px 
• Identification of the target (a woman versus a man, a specific car): 

13 ± 3 px; 
 

These criteria correspond to a 50% probability to detect a target at a de-
sired level. For a reliable detection, the target resolution should be greater. 

A preferred view angle, which determines the tilt of the camera’s optic axis 
relative to the vertical, may be required for several reasons, such as miti-
gating sunlight reflection and target recognition (e.g., one can hardly dis-
tinguish a car’s model observing it from above at a right angle).  

The algorithm for generating admissible routes requires specification of a 
flight altitude and an offset distance. However, these values are not arbi-
trary. The altitude can be selected from the allowed range (determined by 
a mission planner), min max[ , ]def defh h , with the specified altitude increment Δz. 

Here, min
defh  and min

defh  are the minimal and maximal flight altitudes set in ad-

vance by a mission planner for each type of UAS (the superscript def 
stands for default). For each altitude, the offset distance d varies from 
some min

defd  to some max
defd , also specified by a mission planner. If the pre-

ferred offset distance range is unspecified, min
defd  equals the increment of the 

offset distances Δr whereas max
defd  corresponds to the longest possible route 

the aircraft is capable to fly, which depends on its speed (and, thus, fuel 
consumption), maximal time in flight (endurance), and the size and shape 
of the area of interest. For example, max

defd  can be determined requiring the 

flight time not to exceed the UAS endurance. The Appendix presents the 
calculation of the flight time along a route with and without a four-
dimensional wind field. These default constraints on the altitudes and off-
set distances may be refined to take into account required specifications of 
image quality and appearance, as considered below.    

There are many factors affecting the resolution of the image, such as quali-
ty of the optics, the lighting conditions, and the pixel resolution. The latter 
is considered in this report. Suppose, a target of a characteristic size l 



ERDC/CRREL TR-14-20 28 

 

should be observed with the resolution equal to or greater than E pixels. 
Then, the image size, lI, on the camera’s sensing element should be equal 
to or greater than Ew, where w is the size of a single pixel in the camera’s 
sensing element which is determined by camera’s technical specifications. 
The image size can be determined from the following equation (Abrams et 
al. 1999) valid in the three-dimensional space:  

 
 

   
,a v

I
a v b v

sl
l

    
         

r r u v

r r v r r v
 (15) 

where  

 s = the distance from the back nodal point of the lens to the image 
plane,  

 ra and rb = the radius vectors of the endpoints of the target of 
size l,  

 u = the unit vectors from ra to rb,  
 rv = the radius-vector of the lens’ front nodal point,  
 v = the unit vector along the optical axis.  

For the considered case of a camera mounted on a UAS, equation (15) can 
be simplified. Because the distances from the camera to the target are 
much larger than the target size,  a vr r  ≈  b vr r  = Dv , where D is the 

distance from the UAS to the target. Considering a cross-section of the tar-
get on the ground in the vicinity of the optical axis, u  is perpendicular to  
v . Finally, taking into account that the camera is focused to infinity,  
s f , where f is the focal length of the lens. With these adjustments, the 
requirement of minimal image resolution can be recast into the estimation 
of the maximal distance from the UAS to the target, Dmax, as follows:     

 max ,lfD
Ew

  (16) 

which can be used to determine both the maximal altitude above the 
ground, max

resh , and, for each smaller altitude, h, the maximal offset distance, 

max
resd . 
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2 2
 (17) 

A mission planner can specify a preferred view angle, α , by indicating the 
tilt of the camera’s optic axis relative to the vertical, as shown in Figure 8. 
Suppose, the camera’s field of view in the vertical direction is character-
ized by angle φ0 . Then, as can be seen in Figure 8, for a given h, the off-
set distances should be in the range min max[ , ]fov fovd d : 

    min maxtan , tan .fov fovd h α φ d h α φ     (18) 

Figure 8.  Geometry of the camera’s vertical field of view. The magenta marker 
indicates the UAS. The blue line indicates the camera’s optic axis deviated from the 

vertical on the specified angle α. The camera’s field of view is centered on the 
optical axis in the range [α − φ, α + φ]. A target must be within [dmin, dmax] range 

(green line) to be within the camera’s field of view. 

 

Equations (18) can be used to determine the minimal and maximal alti-
tudes above the ground, min

fovh  and max
fovh , respectively, for a specified tilt of 

the optical axis and camera’s field of view: 

 
 

 

min
min

max
max

, , ,
tan

, .
tan

def
fov

def
fov

d πh α α φ
α φ

dh α φ
α φ

   


 


0
2

 (19) 

Another optical characteristic that may affect image quality is the camera’s 
depth of view (Abrams et al. 1999), which depends on the camera’s aper-
ture. The latter, in its turn, depends on lighting conditions and on the light 

h

dmin dmax

φ
φ

α
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sensitivity of the camera’s sensing element, which may be electronically 
enhanced. These parameters are automatically set, and thus, for the con-
sidered UAS application, we assume that the depth of view is not a con-
cern.  

Thus, given default ranges of possible altitudes, min max[ , ]def defh h , and offset dis-

tances, min max[ , ]def defd d , the operational ranges can be found using the follow-

ing formulas: 

 
   
   

min min min max max max max

min min min max max max max min max

max , , min , , ,

max , , min , , , [ , ].

def fov def fov res

def fov def fov res

h h h h h h h

d d d d d d d h h h

 

  
(20) 

Note that the estimates of the operational ranges in equations (20) depend 
on the camera’s focal length, f, and the vertical field of view, φ. For camer-
as with zoom, these two quantities are dependent, φ = φ(f) and vary in 
certain ranges. For larger focal lengths, one can increase the maximal de-
tection distance, in accordance with equation (16), at the expense of the 
camera’s field of view. For such cameras, the range estimates should be 
implemented for every focal length that will be used during the UAS’s op-
eration, which will generate additional sets of candidate routes.    

 



ERDC/CRREL TR-14-20 31 

 

5 Exemplary Scenario: Monitoring a 
Roadway in Mountainous Terrain 

This section considers the following scenario. A friendly troop is going to 
take a route to its destination. Along the route, on the roadsides, enemies 
may lie in wait at certain likely locations. These places are not seen from 
the road. A commander decides to use UAS to make sure that the route is 
secure. The UAS should provide the best resolution imagery (i.e., to fly as 
close to the roadsides as possible) but, at the same time, avoid being heard 
and shot (minimizing its audible footprint at the hostile locations).  

Figure 9 illustrates this scenario. A gray roadway is the object of interest. 
The color of the terrain reflects terrain elevation above sea level. Three 
black circles at the locations h1, h2, and h3 represent hostile observers 
along the roadway. The goal of this section to test and verify the operabil-
ity of the optimization approach described in this report. The focus of the 
numerical example is not to accurately model a specific UAS equipped 
with a specific payload but to investigate what the solution would be for 
given coverage and cost. For this purpose, we assume that a camera is om-
nidirectional and that the actual flight altitudes for different UAS types are 
irrelevant. 

Figure 9.  An example of the surveillance scenario. A gray roadway 
is the object of interest. Black circles depict locations of hostile 

observers. 
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The admissible UAS routes are generated as described in Section 4. Alto-
gether, 112 routes are generated. Figure 10 shows some of the routes in 
which the vertical axis is scaled to show the terrain effects. Figures 10(a) 
and (b) depict routes at three allowed altitudes above the sea level at three 
offset distances (black solid curves). Figure 10(c) shows routes at a con-
stant altitude above the ground. Figure 10(d) exemplifies an oscillatory loi-
tering route with the oscillation frequency F = 8. 

Figure 10.  Examples of admissible routes: (a) and (b) routes with constant offset distances 
and constant altitudes above the sea level, (c) routes with constant altitudes above the 

ground, and (d) an oscillatory loitering route.  

   

   

Figure 11 shows an example of UAS coverage for one admissible route; the 
color of the terrain represents the probability of detecting an event (enemy 
presence, a target, etc.) on the ground. Figures 11(a), 11(b), and 11(c) show 
the maximal probability of detection for each pixel on the ground, the av-
erage probability along the route, and the minimal probability of detec-
tion, respectively. Green and red colors mean high and low probabilities of 
detection, respectively. As one can see, different locations on the ground 
are covered with different probabilities. To characterize an entire route at-

(a) (b) 

(c) (d) 
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a-glance, Figure 11(d) shows the spatially averaged probability of detection 
for each of the admissible routes. 

Figure 11.  UAS coverage characterized by different metrics: (a) each pixel on the ground is 
colored to represent the maximal probability of detection along the UAS route, (b) route-

averaged coverage, (c) minimal probability of detection, (d) spatially averaged probability of 
detection for all admissible routes. 

   

  

 

The outlined scenario task of confirming or denying the presence of a tar-
get fits Mission 1. Therefore, an appropriate metric for “goodness” of a 
UAS route is the maximal probability of detection. Let us consider several 
tactical cases.  

Case 1:  
• All routes are above the audibility threshold, that is, a UAS is not 

heard on the ground for any route it is flying on.  
• Coverage preferences are 0.95 or greater for each pixel on the sce-

ne, which includes both the roadway and the surrounding space. 
• No ground sensors are available. 
• The number of UASs is limited to 1 (or 2) to manually verify the so-

lution. 
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For this case, the cost equals one for every route, and the problem reduces 
to minimization of the number of UASs. Because the coverage preferences 
are equal for each ground location and the number of UASs is limited to 1, 
the solution to this problem can be easily determined analytically: it 
should be a single route with the widest possible coverage. The latter can 
be inferred from Figure 11(d), blue curve.  

Let us verify whether this solution is suggested by the algorithm. The nu-
merical solution is route 109, which is an oscillatory loitering route at the 
lowest altitude, shown in Figure 12(a). If the loitering routes were not pre-
sent in the admissible set, the optimal solution would be route 53, which is 
the route with the lowest altitude and largest offset distance (Figure 12[b]). 
The corresponding spatially averaged coverage for these routes is 0.9954 
and 0.9937, respectively, as seen in Figure 11(d) and, in greater details, in 
Figure 12(d). That is, the numerical solutions coincide with the predicted 
analytical ones. If the number of UAS were limited to 2, the numerical so-
lution is depicted in Figure 12(c). In this case, it consists of two routes with 
the widest individual coverage. In general, this is not the case because the 
widest individual coverage footprints do not automatically result in the 
widest coverage together due to overlapping coverage.  Note that coverage 
preferences of 0.95 detection probability were not satisfied for all locations 
on the ground. In the vicinity of the northeastern corner, there is a terrain 
nook with poor coverage indicated in red. 
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Figure 12.  Numerical solutions to Case 1: (a) the optimal route (109) when the oscillatory 
loitering routes are included in the set of candidate routes; (b) the optimal route (53) when 

the loitering routes are excluded from the set of candidate routes; (c) the optimal combination 
of routes (109 and 53) when the number of UAS is limited to 2; and (d) the spatially averaged 

probability of detection, verifying the numerical solution. 

   

  
 

Case 2: the same as Case 1, but coverage is required for the roadway only, 
(roadway) .pref

dP 0 95  and (surrounding space)pref
dP 0 .  

 
As one can see in Figure 13(a), the optimal route (13) for Case 2 is distinct 
from the Case 1 solution. It provides the required coverage for every spa-
tial location with just a single UAS. Figure 13(b) shows the probability of 
detection averaged over the roadway and verifies the correctness of the 
suggested solution. 
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Figure 13.  Optimal routes for Case 2: (a) the optimal route (13) and (b) the spatially averaged 
probability of detection over the roadway, verifying the correctness of the numerical solution. 

  

Case 3: the same as Case 1, but each route is being heard on the ground 
and characterized by the probability of being detected, as indicated by 
equations (12) and (13).  

Let us consider first when the risk tolerance factor is set to zero, c0 = 0. 
Then, the cost reflects the maximal probability along the route that at least 
one of the listeners will detect the UAS (Figure 14[a]). The algorithm de-
termines an optimal route that balances these two competing factors, cov-
erage and cost. The quality of the solution can be inferred from the specific 
coverage, which is coverage per unit cost, shown in Figure 14(b). In gen-
eral, optimal solutions provide higher specific coverage. 

Figure 14.  Cost function with the risk tolerance factor c0 = 0: (a) maximal probability of being 
detected by at least one listener and (b) specific coverage per unit cost. In general, optimal 

routes correspond to high values of the specific coverage.  

  

Figures 15(a) and (b) show numerical solutions derived by the optimiza-
tion algorithm when the number of available UASs is limited to 1 and 2, 
respectively.  
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Figure 15.  Optimal routes for Case 3: (a) optimal route (59) when the number of UASs is 
limited to 1 and (b) optimal routes (59 and 83) when the number of UASs is limited to 2. 

These routes correspond to two peaks of specific coverage seen in Figure 14(b). 

  

There are three features worth noting. First, the suggested routes (59 and 
83) correspond to the highest specific coverage, two peaks seen in Figure 
14(d), as expected. Second, the single route in Figure 15(a), 59, is almost 
identical to previously suggested route 53, Figure 12(b), except that route 
59 is at the maximal altitude whereas route 53 is at the lowest altitude. 
This conforms to intuitive anticipation that UAS should fly as high as pos-
sible to minimize its audio footprint. Third, the two routes shown in Figure 
15(b) are almost identical. In fact, for some scenarios, the most optimal 
solution might be to have two (or more) UASs fly the same route. Such a 
situation is not uncommon in guarding practice. If there is a perfect route 
to guard an object but the time interval of a single guard to make a com-
plete loop is too long, the practical solution would be to employ another 
guard following exactly same route with a delay. Thus, if multiple UASs 
are suggested to fly the same route, it can be assumed that their relative 
delays are equal and evenly distributed along the route, such that two 
UASs are separated by the half of the route, three UASs by one third, etc. 

The effect of the distinct risk tolerance factors in the cost, c0, is better un-
derstood using optimization of ground sensors because the underlying 
tendency appears more distinctly. Suppose four ground sensors were sup-
plied, two acoustic (small black bullets in Figure 16) and two seismic 
(white triangles), to cover the same scene under the conditions of Case 2, 
that is, the objective is to cover the roadway only while minimizing the 
probability for friendly sensors of being detected by the three hostile ob-
servers. The risk tolerance factor varies in the range [0, 1.75] with an in-
crement of 0.25. Figure 16(a), (b), (c), and (d) show optimal locations of 
the ground sensors for a few selected values of the risk tolerance factor c0 = 

(a) (b) 
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0, 0.5, 1, and 1.5, respectively. Locations of the ground sensors illustrate 
best the concept of the risk tolerance. In Figure 16(a), the locations of the 
sensors are far away from the locations of the adversaries, having the least 
exposure, but provide little coverage of the roadway. However, as the risk 
tolerance factor increases, the sensors move closer to the roadway, provid-
ing better coverage despite the increase in the risk of their own detection. 
Eventually, in Figure 16(d), the sensors almost completely cover the road-
way but are relatively close to the observers.   

Figure 16.  Investigating the risk tolerance factor. The risk tolerance factor, c0, increases by 
an increment of 0.5, starting at zero in Figure (a). Note that the locations of the ground 

sensors (two small black bullets for acoustic sensors and two white triangles for seismic 
sensors) tend to focus at the roadway with increasing coverage (green color). However, the 
risk of their own detection by enemies (large black circles on the roadsides) also increases. 

  

  

Figure 17 summarizes these results, showing explicitly how the specific 
cost (per unit coverage) depends on the risk tolerance factor. Figure 17(a) 
is pertinent to the considered scene whereas Figure 17(b) depicts a similar 
trend for a completely different scene (the terrain, the object of interest, 

(a) 

(c) 

(b) 

(d) 
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and the number of hostile observers). One can see that coverage becomes 
more and more risky with the increase of the factor. However, small fac-
tors result in unacceptably poor coverage. Numerical experiments with dif-
ferent terrain features and objects of interest suggested a trade-off value of 
c0 = 1, which is set as default in the current program realization. 

Figure 17.  Dependence of the specific cost (per unit coverage) on the risk tolerance factor, 
c0: (a) the scene shown in Figure 9 and (b) a different scene (not shown in the report) with a 
different terrain, roadway, number and locations of the hostile observers, and the range of 

UAS altitudes. Note a similar trend in the specific cost. 
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6 Summary and Conclusion 

We can generalize the single-index sensor selection and placement algo-
rithm developed for stationary ground-sensor optimization (formulated in 
terms of the binary linear programming problem) to support optimization 
of moving sensors using the set-covering formulation of the routing prob-
lem. This approach has several advantages, such as 

• it is logically simple and numerically efficient; 
• it can incorporate candidate routes specified by different software 

or a user; 
• it can be applied to a point or to extended objects of interest of arbi-

trary shape; 
• it is consistent with flight kinematics (the solutions are smooth); 
• it can accommodate a variety of constraints that might be important 

for a practical use, such as no-fly zones, maximal time of flight, sen-
sor’s field of view and required target resolution, oscillatory loiter-
ing routing, multiple targets for a single mission, and a preferred 
view angle of a target; 

• it supports optimization of multiple UASs without additional modi-
fications or complications; 

• it supports inhomogeneous coverage preferences; and 
• it allows joint optimization of stationary and moving sensors in a 

single mission.    
 

The disadvantages of this approach are that 

• there is no optimization of the shape of the route; 
• the optimality of the suggested route significantly depends on the 

number and suitability of the provided admissible routes; 
• if an automatic generation of admissible routes is used (as consid-

ered in Section 4), the number of admissible routes may be ex-
tremely large without good restrictive heuristics. 
 

To maintain compatibility with the stationary sensor framework, the ad-
missible moving-sensor routes should be characterized in terms of cover-
age and cost. These characteristics depend on time as the sensor moves. In 
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this report, we characterized the coverage and cost by probability of detec-
tion (coverage) and probability of being detected (cost), which enables op-
timization for covert operations, pertinent to two missions: Mission 1, 
verify or deny a presence of a target in a certain area, and Mission 2, con-
stantly monitor a target. Efficient calculation of these probabilities in a 
mathematically exact sense is possible for independent observations. This 
assumption is likely to be violated for moving sensors. More accurate cal-
culations, suitable for both dependent and independent observations, can 
be performed in the signal space but require specification of joint multi-
variate probability distribution functions for signal and noise and numeri-
cal evaluation of M-dimensional integrals, where M is the number of route 
points specifying a route. For typical values of M, needed in practice, the 
exact calculations of the probabilities may become impractical. Approxi-
mate route metrics of maximal and minimal probabilities of detection 
along the route were suggested for Mission 1 and Mission 2, respectively.  

Candidate aircraft routes can be specified either manually or with the use 
of routing and mission planning software. We developed and used in this 
study an efficient algorithm for smooth candidate routes. The algorithm 
provides candidate routes that are not closer than a specified offset dis-
tance from the object of interest.  

For Mission 1, we considered a specific example scenario of a mountainous 
roadway requiring reduced audibility at specified locations of hostile ob-
servers. Numerical solutions yielded adequate solutions verifying the suit-
ability of the developed routing algorithm and the optimization approach. 

However, other approaches are possible. For example, sequential optimi-
zation determines first an optimal UAS route and then stationary sensor 
locations. The route optimization can be specified not by the detection 
probability but by a completely distinct mission-specific objective func-
tion, for example, reflecting an aggregated time at which the target had 
been observed subject to specified resolution requirements. For this case, 
a much wider spectrum of route optimization approaches can be applied 
that are not necessarily compatible with the stationary sensor optimiza-
tion. Once routing optimization is completed, ground-sensor optimization 
can be implemented to complete the mission by providing coverage of are-
as poorly covered by UAS. 
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Appendix A: Duration of Flight 

In this appendix, the duration of flight, T, is calculated with and without a 
four-dimensional (space and time) wind field by taking into account a UAS 
flight control system that counteracts wind and keeps a UAS on its original 
course. 

Let us consider first a case with no wind. We assume the air speed is con-
stant. Let si i+1 = si+1− si  be a vector connecting two consecutive route 
points i and i + 1 with magnitude si i+1 equal to the Euclidian distance be-
tween these two points. Then, in the absence of wind, the total time for a 
route specified by M route points is given by the following equation: 

 ,
M

i i
i

T s
V 



  1
1

1
 (A1) 

where the (M + 1)th index indicates the first route point (a closed route), 
and V is the UAS air speed, which, in this case, coincides with the speed 
relative to the ground. Distances si i+1 may not be all equal to the specified 
route resolution due to the problematic areas described in Section 4.  

In the presence of wind, the calculations are less trivial. The most general 
wind specification is a four-dimensional, three-component vector wind 
field, W(r,t). The resolution in space and time of the wind field is inde-
pendent of the resolution of a UAS route. We shall assume that the wind 
field is specified for arbitrary r and t. Then, as the UAS moves from route 
point i to the following route point i+1 along a straight line, the wind may 
change its magnitude and direction continuously. A UAS auto pilot will 
mitigate these changes by adjusting the direction of the UAS velocity but 
keeping the airspeed, V, constant, which is assumed to be greater than 
W(r,t) for any time and location. As a result, a UAS speed along a straight 
line from i to i+1, denoted ( ( ), )i iU s t r1 , becomes variable. Here, s denotes 

the distance from si towards si+1 along a straight line, i is s   10 , and 

i it t t   1 . The goal is to determine time Δ i i i it t t  1 1  in these condi-

tions. 
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Let us represent the wind velocity vector W and the UAS velocity V by a 
sum of two vectors: 

 ( , ) ( , ) ( , ), ( , ) ( , ) ( , ),t t t t t t    W r W r W r V r V r V r
 

 (A2) 

where the subscripts 


 and   indicate vectors parallel and perpendicular 
to si i+1, respectively. Hence: 

 ( ) ( ), , ,i i i iW W      W s W s W W W0 0
1 1   

 (A3) 

where ( ) /i i i i i is  s s0
1 1 1  is a unit vector in the direction of si i+1. To coun-

teract the transverse component and to keep the UAS flying in the direc-
tion si i+1, a UAS control unit will set  V W , and thus  

     //
V V V V W W    

1 21 22 2 2 2 2
 

. (A4) 

Therefore, the resulting UAS speed along si i+1 is 

   /( )

( )

( , ) ,

( ) .

i i

i i i

U t W V V W W

s s





      

 

r W s

r s s

1 20 2 2 2
1

0
1

    (A5) 

The problem of the calculation of the time interval Δ i it 1  can now be for-

mulated in conventional terms of the ordinary differential equation taking 
the travel length s as an independent variable (for convenience, to guaran-
tee the arrival to the next route point exactly) and considering unknown 
time t as function of the travelled distance, t = t(s):  

 , ( )
( , ) i

dt t t
ds U s t

 
1 0 . (A6) 

Equation (A6) can be solved numerically for i is s   10 by standard nu-

merical techniques, for example, by the fourth-order Runge-Kutta method 
or one of its variations (Ascher and Petzold 1998). 

The total travel time along the route is found by the summation of all 
Δ i it 1 . 
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The following algorithm with a progressively decreasing integration step 
size can be used to calculate Δ i it 1 . 

Algorithm 3. Travel time Δ i it 1 with variable speed.  

Inputs: (si, si+1) – three-dimensional space vectors indicating locations of 
the ith and (i+1)th route points; ( , )U s t  – UAS speed from Equation (A.5); 
ti – time at which UAS was at the si location, ε – relative threshold of the 
integration determining the accuracy of the sought time interval Δt. 

Output: Δt. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

calculate distance si i+1 = | si+1- si|; 
set the initial integration step ds = 0.5 si i+1; 
calculate initial travel-time interval Δt0 by solving Equation (A.6); 
initialize the relative error: e = ε + 1;  
WHILE e > ε; 
      reduce the integration step: ds = ds/2; 
 calculate a new travel-time interval Δt; 
      calculate the relative error: e = | Δt – Δt0|/ Δt0 
      Δt0 = Δt; 
END WHILE 
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